High Capacity Multi-Lithium Oxide Cathodes and Oxygen Stability

Jagjit Nanda

Email: nandaj@ornl.gov

Phone: 865-241-8361

Oak Ridge National Laboratory

2017 U.S. DOE Vehicle Technologies Office Annual Merit Review

June 7, 2017 Project ID: ES106

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project start date: Oct. 1, 2015
- Project end date: Sept. 30, 2018
- Percent complete: 65%

Budget

- FY16 Funding: \$ 400K
- FY17 Funding: \$ 400K

Barriers

Performance: High energy density for

PEV applications with cell level targets ≥

400 Wh/kg and 600 Wh/L

Life: More than 5000 deep discharges

(SoC range) over the entire life

Safety: Thermally stable and abuse tolerant

Partners

- Pacific Northwest National Laboratory
 Electron Microscopy
- Brookhaven National Laboratory
 Synchrotron X-ray diffraction and Microscopy
- SSRL, SLAC, Stanford CA XANES and X-ray imaging
- CAMP Facility, Argonne National Laboratory

Relevance and Issues

- It's critical to develop practical high-voltage and high-capacity cathode materials for lithium-ion batteries to achieve DOE 2020 cell level targets of 400 Wh/kg & 750 Wh/L or Battery 500 goal of 500 Wh/kg for 1000 cycles.
- Ni-rich NMC and concentration gradient NMC cathodes are currently being developed and commercialized to meet the energy density targets.
- There is substantial evidence from recent experiments that most of the oxide cathodes evolve oxygen either directly or mediated by the carbonate electrolyte when cycled above 4.3 V.
- Oxygen loss from the cathode surface contributes to irreversible capacity loss and structural transformations.

Relevance and Issues

- Oxygen activity and its participation in the redox process is an important barrier for attaining high voltage and capacity in a number of important cathode chemistries.
- Current focus of this work is to understand oxygen loss and structural transformations in high capacity cathodes and develop approaches to address these.

Cathode chemistries studied over the last 2 years

Charge compensation at high voltage during delitihiation involves oxygen participation

Milestones

Due Date	Description	Status
06/30/2016 (Q3)	Identify the roles of Ni and F towards obtaining reversible redox capacity at higher voltage and stabilizing Ni-rich compositions. Complete Subtask-2.1 XANES, microscopy, and XPS studies.	
09/30/2016 (Q4)	Identify the roles of Ni and F towards obtaining reversible redox capacity at higher voltage and stabilize Ni-rich compositions. Subtask 2.2 Gas evolution and electrochemistry.	Complete
12/31/2016 (Q1)	Synthesize Ni-rich $\text{Li}_2\text{Cu}_x\text{Ni}_{1-x}\text{O}_2$ cathodes with x = 0.2 and 0.3 and evaluate their high voltage capacity and oxidative stability [> 225 mAh/g, 25 cycles].	Complete/Go-No Go
03/31/2017 (Q2)	Complete in-situ and ex-situ X-ray, neutron, and spectroscopic studies of Ni-rich $\rm Li_2Cu_xNi_{1-x}O_2$ and related high voltage cathode compositions.	Complete
06/30/2017 (Q3)	Synthesize one particular class and composition of cation disordered cathodes: Li ₂ MoO ₃ and Cr - substituted Li ₂ MoO ₂ .	In progress
09/30/2017 (Q4)	Complete structural and electrochemical performance analysis of disordered cathodes- Li ₂ MoO ₃ and Cr substituted Li ₂ MoO ₂ .	In progress

Approach

Design and synthesis of high-voltage, high-capacity oxide cathodes guided by *state-of-the-art* characterization and modeling:

- High redox voltage in cathodes is enabled by addressing oxygen stability and/or incorporating polyanionic groups.
- Synthetic approaches include anionic substitution and advanced coatings to stabilize the interface and bulk structure.
- Structural and interfacial changes are correlated with electrochemical performance.
- Diagnostic tools include a suite of microscopic and spectroscopic techniques.

Example:

Can we think of a stabilized oxide framework with redox active $Ni^{3+} \rightarrow Ni^{4+} / Cu^{2+} \rightarrow Cu^{3+}$?

Fluorination is a simple case of anionic substitution to address oxygen stability.

Unpublished 2017

Copper Stabilized Li₂NiO₂ Solid Solutions: Key Points

- Synthesized Ni-rich $Li_2Cu_xNi_{1-x}O_2$ solid solution, x = 0.5 0.3 using solid state and sol-gel methods.
- Cu stabilization improves electrochemical stability compared to parent phases Li₂NiO₂ and Li₂CuO₂, but oxygen loss occurs before accessing higher oxidation states (Cu^{2+/3+}; Ni^{3+/4+}).

Structural transition and gas evolution during 1st charge cycle similar to lithium-excess TM oxides

High Ni-content Li₂Cu_xNi_{1-x}O₂ Compositions Synthesized

- As an alternate route, Li₂Cu_xNi_{1-x}O₂ (LCNO) solid solutions were synthesized via a sol-gel method using adipic acid as a chelating agent to reduce primary particle size with carbon coating.
- LCNO prepared through the sol-gel method showed lower capacity and poor cycle life for one of the compositions, Li₂Cu_{0.4}Ni_{0.6}O₂, with Li₂CO₃ as the major impurity phase. This method was not pursued further.

Li₂Ni_{1-x}Cu_xO₂ by solid state reaction $\sum_{y=0.6}^{5} x=0.4$ x=0.2 x=0.2 x=0.2Capacity (mAh/g)

Dr. Wei Tong, Lawrence Berkeley National Laboratory

Understanding and addressing the structural transitions and O₂ evolution during 1st charge cycle is key for electrochemical reversibility in high capacity Li- excess and multi-lithium TM oxides.

In situ Raman study reported earlier confirms ex-situ XRD observations.

Li₂Cu_{0.5}Ni_{0.5}O₂ is a model system studied here, but we notice similar structural changes in a host of multi-lithium TM oxides. **OAK RIDGE National Laboratory

Apart from structural changes we also observed exfoliation and loss of crystallinity with cycling.

Technical Accomplishment

XANES microscopy is sensitive to amorphous and nanocrystalline phases and impurities that techniques like X-ray diffraction cannot detect.

Pristine Li₂Cu_{0.5}Ni_{0.5}O₂ has local Cu and Ni rich impurities mostly Li_xNiO or pure oxides of Ni and Cu

10 µm

XANES mapping of Ni and Cu K edges
Show changes in structure & coordination
after 1st full cycle (details in technical backup slides)

In situ XANES microscopy reveals phase changes and spatial distributions within Li₂Cu_{0.5}Ni_{0.5}O₂ particles.

Summary

- 1. Cu K-edge shifts > 4 V to lower energy.
- 2. Shift does not correspond to Cu²⁺ to Cu³⁺ oxidation.
- 3. Shift could mean structural transformation occurs without formal change in oxidation state

In situ XANES microscopy reveals phase changes and spatial distributions within Li₂Cu_{0.5}Ni_{0.5}O₂ particles.

- Ni K-edge shift shows the same trend as Cu; noticeable shift after 4 V to lower energies.
- These shifts occur around the same voltage where we see substantial gas evolution.

Capacity of Li₂Cu_{0.5}Ni_{0.5}O₂ above 3.9 V is due to gas evolution.

- Gas evolution in pouch cells was quantified using Archimedes' principle.
- Li₂Cu_{0.5}Ni_{0.5}O₂ is stable against oxygen release up to extraction of one lithium per formula unit.
- All capacity extracted above 3.9 V can be attributed to gas evolution, assuming 4 e⁻ per mole of gas.
- O₂ and CO₂ were main gasses detected by mass spectrometry (G. Veith).

Technical Accomplishment

Gas Evolution of Li₂Cu_{0.5}Ni_{0.5}O₂ Cathodes

In-situ mass spectrometry was used to determine the types/amounts of gases evolved from Li₂Cu_{0.5}Ni_{0.5}O₂ cathodes during cycling.

- O₂ and CO₂ were main gases detected.
- In-situ gas evolution studies allow us to monitor electrolyte decomposition products and oxygen evolution from the cathode lattice in an operating battery.
- Similar results obtained from in situ DEMS work on Li₂Cu_{0.2}Ni_{0.8}O₂ from LBNL.
 (Wei Tong and Bryan McCloskey)

Li₂MoO₃ Synthesis and Electrochemical Characterization

Li₂MoO₃ has improved lattice oxygen stability^[1] compared to Li₂MnO₃. Thus, a synthesis procedure was developed to produce Li₂MoO₃ for Li-excess composite high-voltage cathodes.

Synthesized Li₂MoO₃ has desired crystal structure (R3m spacegroup)

Half-Cell Characterization (2.0 – 4.8 V at 10 mA/g)

Technical Accomplishment

Ex-Situ Raman and XRD of Li₂MoO₃ Cathodes

 Li_2MoO_3 cathode was cycled between 2.0 – 4.8 V at 10 mA/g for 10 cycles. The cell was disassembled after recharging to 4.8 V. The Li_2MoO_3 electrode was rinsed with DMC before post-mortem analysis.

Raman Peak in Pristine Li ₂ MoO ₃	Raman Shift (cm ⁻¹)	Assignment ^[1]
а	277	Li ₂ MoO ₃ (Mo-O-Mo bridging species in Mo ₃ O ₁₃ clusters)
b	351	Li ₂ MoO ₃ (Mo=O in MoO ₆ octahedral)
С	896	Li ₂ MoO ₄ (MoO ₄ tetrahedral in Li ₂ MoO ₄). Li ₂ MoO ₄ is a minor impurity which was not detected by XRD.

[1] J. Ma et al. J. Power Sources 2014, 258, 314-320.

- Post-mortem analysis suggests that Li₂MoO₃ becomes amorphous during cycling.
- Future experiments using *in-situ* XRD, *in-situ* Raman, and *in-situ* mass spectrometry will elucidate the details of this transformation.

Response to Reviewers Comments

This project was not reviewed in 2016.

All Comments from 2015 were addressed in 2016 presentation.

Collaborations and Coordination with other Institutions

Electron Microscopy
Drs. Chongmin Wang & Pengfei Yan

In-operando X-ray Synchrotron Studies and Microscopy
Dr. Feng Wang

Synchrotron X-ray microscopy and 3D microstructure Dr. Johanna Nelson Weker

Modeling and oxygen activity of Li-excess compositions

Remaining Barriers and Challenges

- Determine if anionic substitution like fluorination can suppress oxygen evolution and enable high voltage operation.
- Investigate oxygen stability in Li-excess cation disordered cathodes.
- Determine the stability of cathode powders or electrodes in air, especially with respect to Li₂CO₃ formation on surface.
- Optimize the synthesis and electrochemical performance of cation disordered Liexcess compositions: Li₂MoO₃ and Li-excess Cr-substituted LiMoO₂.
- Develop approaches to mitigate lattice oxygen loss and improve structural stability of the cathode surface.

Proposed Future Research

Synthesis and Optimization of High Capacity 2-Lithium Oxide Cathodes: Li₂M^IM^{II}O₃ and Li₂M^IM^{II}O₃ M^I – M^{II}: Ni, Cu, Mo, Mn, Cr

These are crystalline, ordered, stoichiometric compositions to begin with

Lithium-excess disordered compounds

 $\text{Li}_{1+x}(\text{Mn,Co,Ni})\text{O}_2; \ \text{Li}_{1+x}\text{MoCrO}_2; \ \text{Li}_{1.25}\text{Nb}_{0.5}\text{Mn}_{0.5}\text{O}_2 \\ \text{Li}_{1.2}\text{Mn}_{0.4}\text{Ti}_{0.4}\text{O}_2$

Goals

- Increase oxidative stability and attain extra capacity.
- Understand the role of disorder in increasing the lithium diffusion pathways.
- Quantify oxygen participation in the redox process.

Origin of extra capacity in disordered cathodes

Any proposed future work is subject to change based on funding levels

Seo, Ceder et al. Nature Chemistry, 8, 692 (2016)

Technical Approach:

Summary

Synthesis and in-depth analysis of lithium-excess and multilithium chemistries for high voltage, high capacity cathodes

- Model driven synthetic approaches: solution-based, sol-gel and solid state methods.
- Diagnostic tools include a suite of microscopic, spectroscopic, and analytical techniques.
- Emphasis is placed on understanding and preventing oxygen loss at high voltage

Accomplishments:

- Identified chemical and structural changes that occur in Li₂Cu_{0.5}Ni_{0.5}O₂ under in situ conditions and mapped out phase transformations using TXM-XANES.
- Unraveled mechanisms of electrochemical activity and degradation of Li₂Cu_xNi_{1-x}O₂ cathodes using a combination of X-ray and neutron diffraction, in situ Raman spectroscopy, electrochemistry, gas evolution experiments, and TEM.
- Synthesized Li₂MoO₃ as an analogue to Li₂MnO₃ with greater stability of lattice oxygen and completed initial characterization with electrochemistry, XRD, and Raman.

Ongoing work:

- Optimize the synthesis and processing of cation disordered Li-excess compositions, Li₂MoO₃ and Cr-doped Li₂MoO₃
- Understand structural transformations in Li₂MoO₃
 in situ using XRD, Raman, and gas monitoring.
- Investigate oxygen stability in disordered cathodes and continue to develop approaches to prevent oxygen loss.

Technical Back-up

Ex-situ XANES Spectra: Li₂Cu_{0.5}Ni_{0.5}O₂

These spectra are used to generate the Ni and Cu K edge XANES 2D maps as shown in slide # 11

National Laboratory

Li₂CuO₂ and F- substituted Li₂CuO₂ have similar rate and capacity retention

